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Although diffusing-wave spectroscopy has already been successfully applied to study dynamic properties of
foams, we still lack a clear understanding of the diffusive transport of photons in foams. In this paper, we
present a thorough study of photon diffusion in the Kelvin structure as an example for a three-dimensional
model foam. We consider the photons’ random walk as they are reflected or transmitted by the liquid films
according to the rules of ray optics. For constant reflectance and special one- and two-dimensional photon
paths, we are able to calculate diffusion constants analytically. Extensive numerical simulations reveal a
remarkable similarity with our previous two-dimensional investigations. To implement a more realistic model,
we use thin-film reflectances. The simulated diffusion constants exhibit oscillations for varying film thickness
d which vanish when disorder is introduced in d. Absolute values and the behavior at small d agree with
measurements in very dry foams providing a strong argument for the importance of liquid films in the diffusive
photon transport. An analytical theory with a minimum of input parameters reproduces the numerical results.
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I. INTRODUCTION

Many objects in nature, e.g., conventional colloidal sus-
pensions or thick aligned nematic liquid crystals, are visibly
opaque. In such turbid samples, each photon is scattered
many times before exiting the material. Therefore the photon
can be considered as a random walker which ultimately leads
to a diffusive transport of light intensity �1–3�. Diffusing-
wave spectroscopy �DWS� �4,5� and diffuse-transmission
spectroscopy �DTS� �6� exploit the diffusive nature of light
transport to provide information about the static and dynamic
properties of an opaque system.

Recent experiments have applied diffusing-wave spectros-
copy to cellular structures such as foams which consist of air
bubbles separated by liquid films �7–14�. This suggests that
the model for photon transport based on the random walk
picture is still valid. However, the mechanisms underlying
the random walk are not well understood. A relatively dry
foam consists of cells separated by thin liquid films. Three of
them meet in the so-called Plateau borders which then define
tetrahedral vertices �15�. One suggestion is that light scatter-
ing from the Plateau borders is responsible for the random
walk �9�. The transport-mean-free path l* over which the
photon direction becomes randomized is then predicted as
l*�H /��, where H is the average bubble diameter and � is
the liquid volume fraction. However, data rule this out in
favor of the empirical law l*�H�0.14/�+1.5� �9�. This may
imply significant scattering from vertices �16� or films
�17–19�. New questions about the role of Plateau borders are
raised by recent experiments on the absorption of diffuse
photons in an aqueous foam due to a dye added to the liquid
phase �20�. The absorption is large in the intermediate wet-
ness range 0.04���0.2 and reaches its maximum at �
�0.07. This encourages novel transport effects, such as total
internal reflection of photons inside the Plateau borders �20�.
Apparently, the role of Plateau borders, vertices, and films
for light transport in foams beg for complete theoretical un-
derstanding.

We concentrate on the role of liquid films to study light
transport in dry foams. Cells in a foam are much larger than
the wavelength of light, thus one can employ ray optics and
follow a light beam or photon as it is reflected by the liquid
films with a probability r called the intensity reflectance.
This naturally leads to a persistent random walk of the pho-
tons, where the walker remembers its direction from the pre-
vious step �21,22�. First introduced by Fürth as a model for
diffusion in a number of biological problems �23�, and
shortly after by Taylor in the analysis of turbulent diffusion
�24�, the persistent random walk model is now applied to a
multitude of diverse problems and systems such as polymers
�25�, diffusion in solids �26�, dispersal of spores �27�, cell
movement �28�, and general transport mechanisms �29–31�.

We have already studied photon transport in two-
dimensional foams. We started with the simplest model, the
regular honeycomb structure, using a constant intensity re-
flectance r. We found a rich behavior of the diffusion con-
stant in terms of the possible photon paths and reflectance
�17�. The honeycomb structure is highly idealistic, therefore
we extended our studies towards real dry foams in two steps
�18�. In a first model, we introduced topological and geo-
metrical disorder based on a Voronoi foam model �32,33� to
investigate the influence of disorder. The essential result of
our Monte Carlo simulations is summarized in the empirical
formula for the diffusion constant D�r�,

DVoronoi�r� = 0.25Hc
1 − r

r
�1 − b1 + b2r� . �1�

The main behavior is governed by the first factor on the
right-hand side, which is also found in the honeycomb struc-
ture. However, there is a small but systematic deviation from
it described by the last factor with 0�b1�0.1 and b2�0.1.
Both constants show a clear dependence on disorder in the
Voronoi foam �18,19�. In a second model, we used the inten-
sity reflectance of thin films with its significant dependence
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on the incident angle and on d /�, where d is film thickness
and � the wavelength of light. We found that l* /H increases
with decreasing film thickness for d /��0.2 and that it varies
between 2 and 12, where the last value applies to a common
black film with d�30 nm �15�. Our results agree with mea-
surements by Vera et al. where l* /H increases from 2 to 20
for decreasing � �9�. This quantitative agreement serves as a
first strong argument for the importance of liquid films in the
diffusive transport, otherwise they should result in much
larger transport mean free paths.

In this paper, we extend our studies towards real three-
dimensional dry foams to explore the effect of space dimen-
sion on the photon transport. Inspired by the success of a
regular honeycomb in two dimensions, we choose the Kelvin
structure as a three-dimensional model foam �15� but ignore
curvature of the liquid films. Although periodic in space, the
Kelvin structure has been used for analytic access to the
physical properties of foams as exemplified by work on their
rheological behavior �34�. In the Kelvin structure, we will
identify special one- and two-dimensional photon paths. For
one random-walk type taking place on a square-rectangle
tiling, we are able to evaluate the diffusion constant analyti-
cally although it corresponds to a Markov chain of eighth
order. The calculations are done based on the model of con-
stant intensity reflectance, for which we then present exten-
sive numerical studies of photon diffusion in the full three-
dimensional space. They reveal a remarkable universality of
Eq. �1�. In order to treat a more realistic model, we use the
intensity reflectances of thin films within our Monte Carlo
simulations as in the two-dimensional case. The numerical
results show oscillations in the diffusion constant when plot-
ted as a function of d /� which, however, vanish when we
introduce disorder in the film thickness. Absolute values of
l* /H are in agreement with measurements for very dry
foams. This confirms our conclusion from the previous para-
graph that liquid films are important for the diffusive trans-
port of light. We will, furthermore, present an analytical
theory with which we are able to reproduce our numerical
results. It only needs a minimum of input parameters and the
angular distribution function of the photons.

Our paper is organized as follows. In Sec. II we introduce
the possible photon paths in a Kelvin structure and identify
special cases. Photon transport in a Kelvin structure using
constant and thin-film intensity reflectances are discussed in
Secs. III and IV, respectively. We close with a discussion of
our results and conclusions in Sec. V.

II. PHOTON PATHS IN THE KELVIN STRUCTURE

Kelvin’s structure is a three-dimensional periodic foam
that consists of tetrakaidecahedra �14-sided cells� in the bcc
arrangement. The Kelvin cell is similar to the Wigner-Seitz
cell of the bcc lattice, with some subtle curvature of the
faces, in order to satisfy the equilibrium rules of Plateau
�15�. Proposed by Kelvin to partition space into equal-
volume cells with the least interface area, it is now known
that the Weaire-Phelan structure is a better solution to this
problem �35–37�.

As a simplification, we consider a tetrakaidecahedron
with flat surfaces �see Fig. 1�. It has six square and eight

hexagonal faces, with an edge length l. As shown in Appen-
dix A, the volume of the tetrakaidecahedron is equal to the
volume of a sphere of diameter

H =�3 48�2

�
l � 2.78528l . �2�

As a comparison, the distances between opposite square and
hexagonal faces are 2�2l�2.82843l and �6l�2.44949l, re-
spectively. We choose a Cartesian coordinate system whose
origin is placed at the center of the unit cell and whose base
vectors êx, êy, and êz point along the respective surface nor-
mals of the faces 1, 2, and 6 �see Fig. 1�. For the ith face, the
normal vector n̂i, center ci, and vertices vi

j �1� j�4 for the
square faces and 1� j�6 for the hexagonal faces� are re-
ported in Appendix A.

In the following, we model the photon paths in a Kelvin
structure as a random walk with rules motivated by ray op-
tics, i.e., an incoming light beam is reflected from a face with
a probability r, called intensity reflectance, or traverses the
face with a probability t=1−r, called transmittance. We as-
sume that the faces �films� are infinitely thin so there is no
lateral displacement of the transmitted light ray along the
face. In the concrete calculations, we will normalize edge
length l and light velocity c to 1.

First, we consider photon paths in a tetrakaidecahedron
with completely reflecting faces �r=1�. A photon propagat-

ing in the direction of unit vector V̂ and being reflected from
the ith face moves along a new direction given by unit vector

V̂r = V̂ − 2n̂i�V̂ · n̂i� . �3�

It satisfies V̂r	 n̂i= V̂	 n̂i and V̂r · n̂i=−V̂ · n̂i, i.e., V̂r, n̂i, and

V̂ are coplanar and the angle of reflection equals the angle of
incidence. In general, a photon path is embedded in three-
dimensional space. One-dimensional and two-dimensional
photon paths in a tetrakaidecahedral billiard deserve atten-
tion, since they are not expected in asymmetric and
nonregular billiards. From the geometry and symmetry of a
tetrakaidecahedron, it follows immediately that perpendicu-
lar incidence on the faces leads to one-dimensional photon
paths. There are three of them for the square and four for the
hexagonal faces. For a two-dimensional path, all incidence
and reflection directions have to be in the same plane of

FIG. 1. The tetrakaidecahedral cell with flat surfaces. Note that
the squares 3, 4, and 5 lie opposite to the respective squares 1, 2,
and 6; the hexagons 8, 9, 13, and 14 lie opposite to the respective
hexagons 11, 12, 10, and 7.
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motion specified by the normal vector N̂, i.e., N̂ · V̂= N̂ · V̂r
=0. Equation �3� then implies that the normal vectors of all

reflecting faces should be in the plane of motion, i.e., N̂ · n̂i
=0. As an example, photons will not leave the plane charac-
terized by x=y �it cuts the faces 5, 6, 7, 9, 12, and 14� since
all their normal vectors lie in the plane of motion. A detailed

analysis of the condition N̂ · n̂i=0 shows that planar motion
only occurs in planes characterized by x= ±y−h0, x= ±z
−h0, and y= ±z−h0, where −�2l /2�h0��2l /2. Further-
more, the normal vectors of square faces lie in the x=h0, y
=h0, and z=h0 planes giving planar photon paths where re-
flections from hexagonal faces are excluded.

The intersection of the x=y−h0 plane �and its symmetry
related ones� with the space filling Kelvin structure is a dis-
torted hexagonal tessellation. Each hexagon has two edges of
length l and four edges of length �3l. The intersection of the
z=h0 plane with the Kelvin structure is a tiling of octagons
and squares �see Fig. 2 for h0=0�. Each octagon has four
edges of length l+�2�h0� and four edges of length �2l
−2�h0�. The edge length of the squares is l+�2�h0�. For a
special injection angle of 45° relative to a long edge of an
octagon, photons move along a closed path. They, therefore,
allow an analytical treatment of the random walk which
takes place at intensity reflectances r�1. We will illustrate
the calculation of the corresponding diffusion constants in
the following section.

III. PHOTON TRANSPORT IN A KELVIN STRUCTURE:
MODEL OF CONSTANT INTENSITY REFLECTANCE

A. Analytical treatment of 1D and 2D transport

As already mentioned in the Introduction, the random
walk in a Kelvin structure based on ray optics is a persistent
random walk since the new direction chosen by the photon in
the n+1th step depends on the direction of the nth step. In

one dimension, which in our case corresponds to perpendicu-
lar incidence on the faces, the solution for the probability
Pn�x� of finding the random walker at location x after n steps
is well-known. It is determined in the framework of master
equations and characteristic functions, i.e., the spatial Fourier
transforms of probability distributions �21�. The persistent
walk in one dimension is a second-order Markov process
since Pn�x� obeys a second-order linear difference equation
in the discrete step index n which, in the continuous case,
gives the telegrapher equation. For both equations, the long-
time limit is shown to be diffusive. In our case, with step
length 2�2l between opposite square faces and �6l between
opposite hexagonal faces

D�n̂1� = D�n̂2� = D�n̂5� = �2
1 − r

r
lc ,

D�n̂7� = D�n̂8� = D�n̂9� = D�n̂10� =
�6

2

1 − r

r
lc , �4�

where D�n̂i� is the diffusion constant for photons launched
along the surface normal n̂i.

The analytical treatment of the two-dimensional transport
is much more elaborate. At the end of Sec. II, we identified
for totally reflecting faces a closed photon path in the z=0
plane, where the photon is reflected from one square face to
the other under an injection angle of 45° �see Fig. 2�. The

photon path consists of four steps along the unit vectors b̂1,

b̂2, b̂3, and b̂4. Now, for partially reflecting faces �r�1�,
photons perform a two-dimensional random walk in the til-
ing of octagons and squares in the z=0 plane as indicated in
Fig. 2.

To treat the two-dimensional random walk analytically, it
is necessary to identify different photon states. According to
Fig. 2, the photon in the rightmost �leftmost� cell is reflected
to the right. When it moves to the neighboring cell with a
probability t=1−r, its attribute to be reflected to the right
changes and it is reflected to the left. Therefore, to fully
characterize the status of a photon, we have to introduce a
helicity 
 besides the position and the step vectors. In addi-
tion, after transmission to a neighboring cell, the step vectors
along one direction interchange their lengths �see Fig. 2�. We
take this into account by introducing separate step vectors bi

+

and bi
−. The magnitude of the long and short steps are l�1

+2f� and l�3−2f�, respectively, where �2fl �0� f �1� is the
starting position on the long edge of an octagon. The average
step length is thus 2l, and it is assumed for f =0.5 where the
photon path is composed of equal steps.

We denote by Pn
±i�x� the probability that the photon after

its nth step arrives at position x= �x ,y� with step vector bi
±

and helicity 
. According to Fig. 2, we can establish a set of
eight master equations which couple the probabilities at step
n+1 to the probabilities at step n. We only give the first four
equations:

Pn+1
+1 �x� = rPn

+4�x − b1
+� + tPn

−1�x − b1
+� ,

Pn+1
−1 �x� = rPn

−2�x − b1
−� + tPn

+1�x − b1
−� ,

FIG. 2. Path of photons injected in the plane z=0 with an angle
of 45° relative to a long edge of an octagon. Note that the intersec-
tion of the plane z=0 with the Kelvin structure is a tiling of octa-

gons and squares. The photons move along four directions b̂1, b̂2,

b̂3, and b̂4 with a short and a long step length. By transmission to a
neighboring cell, the helicity of the photon path changes.
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Pn+1
+2 �x� = rPn

+1�x − b2
+� + tPn

−2�x − b2
+� ,

Pn+1
−2 �x� = rPn

−3�x − b2
−� + tPn

+2�x − b2
−� . �5�

For the description of the photon distribution in the plane,
we do not need to specify the internal state �helicity, step
vector� explicitly. That means we are mainly interested in the
probability that the photon arrives at position x at step n,

Pn�x� = �
±,i

Pn
±i�x� . �6�

For Pn�x�, we determine the first and second moments as the
characteristic features of a random walk:

	x
n =� � xPn�x,y�dxdy ,

	y
n =� � yPn�x,y�dxdy ,

	�x − 	x
n�2
n =� � �x − 	x
n�2Pn�x,y�dxdy ,

	�y − 	y
n�2
n =� � �y − 	y
n�2Pn�x,y�dxdy . �7�

Using the Fourier transform of the probability distribution,
also called characteristic function,

Pn�k� =� � eik·xPn�x,y�dxdy , �8�

the moments are conveniently calculated:

	xm1ym2
 = ��− i�m1+m2
�m1+m2Pn�k�

�kx
m1�ky

m2
�

k=0

, �9�

where k= �kx ,ky� and m1, m2 are positive integers including
zero.

We apply the formalism developed in Ref. �17� and find
that Pn�k� satisfies

�
i=0

i=4

m2iPn+2i�k� = 0, �10�

where

m8 = 1,

m6 = − �1 − r�2�1,

m4 = 2�1 − 2r��1 + 2r2 − 2r� + �1 − 2r��1 − r�2�2,

m2 = − �1 − r�2�1 − 2r�2�1,

m0 = �1 − 2r�4,

�1 = 2 cos�k · �b1
+ + b1

−�� + 2 cos�k · �b2
+ + b2

−�� ,

�2 = 2 cos�k · �b1
+ + b1

− + b2
+ + b2

−��

+ 2 cos�k · �b1
+ + b1

− − b2
+ − b2

−�� . �11�

Note that Eq. �10� is an eighth-order linear difference equa-
tion for Pn�k�, indicating that the corresponding random
walk is an eighth-order Markov chain. In the continuum
limit, it would correspond to a linear partial differential equa-
tion with time derivatives up to the eighth order.

We do not make an attempt to determine Pn�k� com-
pletely. Instead we are interested in the long-time limits of its
first two moments. Taking first derivatives of Eq. �10� with
respect to k and using Eq. �9�, we find a master equation for
the mean displacement along the x direction

�
i=0

i=4

�m2i�k=0	x
n+2i = 0 �12�

and the equivalent result for the y direction. To arrive at Eq.
�12�, we used ��m2i /�k�k=0=0. To solve Eq. �12�, we insert
the ansatz 	x
n�zn, and find that z
� �±1, ±�1−2r , ±�1−2r , ± �1−2r��. The magnitude of each
z is smaller than or equal to one. We can therefore conclude
that in the long-time limit or for large n

	x
n = 	y
n = 0. �13�

The mean-square displacement along x obeys

�
i=0

i=4 
�m2i�k=0	x2
n+2i − � �2m2i

�kx
2 �

k=0
� = 0, �14�

an equivalent equation is valid along y. Note that Eq. �14�
corresponds to Eq. �12� but now with an inhomogeneity.
Since we already know the solutions of the homogeneous
equation, they decay to zero or give a constant of the order of
one in the long-time limit, we just need a special solution for
which we make the ansatz 	x2
n=a0n. The constant a0 is
easily found from Eq. �14� and we obtain in the long-time
limit

	x2
n = � 1

S2

�2S1

�kx
2 �

k=0

n , �15�

where S1=�i=1
i=3m2i and S2=�i=1

i=42im2i. For sufficiently large
values of n, the time for n steps is �=2 ln /c, where 2l is the
average step length. Returning to physical units, we obtain
the diffusive behavior of the mean-square displacements

	x2
 = 2Dx� and 	y2
 = 2Dy� , �16�

where the diffusion constants read

Dx = Dy =
1 − r

r
lc . �17�

As expected, the planar diffusion is isotropic. Note that al-
though the single step lengths depend on the starting position
on the edge of an octagon, only their average appears in the
final result. Note further that all our arguments can be ex-
tended to planes characterized by z=h0�−�2l /2�h0

��2l /2�, where the same type of random walk occurs. Fi-
nally, our analytical results of Eqs. �4� and �17� also provide
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a partial test of the numerical simulations of photon transport
presented in the following section.

B. Numerical simulations

To access the photon’s random walk in three-dimensional
space, we further studied our model by numerical simula-
tions. The computer program takes 104 photons at an initial
position �on one of the faces of the tetrakaidecahedron�, and
launches them in a direction specified by polar angles 
 and
�. Then it generates the trajectory of each photon following
a standard Monte Carlo procedure and evaluates the statistics
of the photon cloud at times �� �500,650, . . . ,4850� �in
units of l /c�. The mean-square displacement measuring the
width of the photon cloud is computed for each snapshot at
time �, and then fitted to 2D�+a0 for each spatial direction
by the method of linear regression. An offset a0 takes into
account the initial ballistic regime. Within our statistical er-
rors, Dx, Dy, and Dz give the same result and the correlation
factors

�xy =
	xy
 − 	x
	y


�	x2
	y2

,

�xz =
	xz
 − 	x
	z

�	x2
	z2


,

�yz =
	yz
 − 	y
	z

�	y2
	z2


, �18�

are not significant, so the diffusion is isotropic.
For angles 
� �1° ,10° , . . . ,82° �, �

� �90° ,108° , . . . ,234° � and 
� �4° ,13° , . . . ,85° �, �
� �95° ,113° , . . . ,239° � and ten different starting positions,
the simulation is repeated for each intensity reflectance r
� �0.1,0.2, . . . ,0.9�. As a reasonable result, no dependence
on the starting point and the starting direction is observed. In
Fig. 3 we plot the average of the diffusion constants Dx, Dy,
and Dz as a function of r. The line is a fit to 0.21Hc�1

−r� /r. To increase the resolution, the rescaled diffusion con-
stant D�r� / �0.21Hc�1−r� /r� versus r is plotted in Fig. 4. The
error bars reflect the standard deviation of an averaging pro-
cess over all diffusion constants D�
 ,�� for different starting
positions and angles. From Fig. 4 we find that our numerical
results agree well with the relation

DKelvin�r� = 0.21Hc
1 − r

r
�1 − b1 + b2r� . �19�

This is a remarkable result since it demonstrates that for
constant reflectance r the diffusion constant of the three-
dimensional Kelvin structure and the two-dimensional
Voronoi foam �see Eq. �1�� are very similar in spite of the
differences in dimension and structure.

IV. PHOTON TRANSPORT IN A KELVIN STRUCTURE:
MODEL OF THIN-FILM INTENSITY REFLECTANCE

A. Numerical simulations

In the second, more realistic model, we use the intensity
reflectance of thin films. It depends on the polarization state
of light, the incident angle �measured with respect to the
normal of the film�, and the film thickness. It is derived by
applying Fresnel’s formulas to each liquid-gas interface and
summing up multiply reflected light paths in a coherent way
�38�.

For a plane wave with wave vector kk̂ incident from the
air onto a liquid film with normal vector n̂, the electric field
with a general state of polarization is Eincident=Exe

ı�xêx
+Eye

ı�yêy +Eze
ı�zêz. The plane of incidence is perpendicular

to the vector b̂= n̂	 k̂. The incident field can be decomposed
into a component parallel �p� to the plane of incidence
and a component perpendicular �s for the German word
“senkrecht”� to this plane. For each component, all possible
multiple refraction paths in the film are summed up whereby
Fresnel’s formulas are applied to each refraction event �38�.
Ultimately, from this procedure the electric fields of the
transmitted and reflected waves are obtained as

Etransmitted = �ts − tp��Eincident · b̂�b̂ + tpEincident,

FIG. 3. The diffusion constant in units of cell diameter H times
light velocity c as a function of intensity reflectance r. D�r� / �Hc�
=0.21�1−r� /r and Monte Carlo simulation results are denoted, re-
spectively, by line and points.

FIG. 4. The diffusion constant D�r� plotted relative to
0.21Hc�1−r� /r as a function of intensity reflectance r.
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Ereflected = �rs + rp��Eincident · b̂�b̂ − rpEincident

+ 2rp�Eincident · n̂�n̂ . �20�

In Appendix B, the coefficients rp, tp, rs, and ts are expressed
in terms of the incident angle i, film thickness d, light wave-
length �, and film refractive index n0. The intensity reflec-
tance r= �Ereflected�2 / �Eincident�2 is then obtained from Eq. �20�
as

r�i� = �rp�2 +
�Eincident · b̂�2

�Eincident�2
��rs�2 − �rp�2� , �21�

where � � denotes the magnitude of a complex number.

In the limiting cases Eincident� b̂ and Eincident� b̂, Eq. �21�
gives the respective reflectances �rs�2 and �rp�2. For perpen-
dicular polarization, Fig. 5 illustrates r= �rs�2 as a function of
the incident angle i for different thicknesses d /� and the
refractive index n0=1.34 of water. For films as thin as a
common black film �d�30 nm or d /�=0.06 for �
=500 nm�, the reflectance is very small but sharply increases
to 1 close to grazing incidence �i=� /2�. Increasing the
thickness d, oscillations in r�i� start to enter at d=� / �2n0�
due to the constructive and destructive interferences of the
multiple refraction paths. For parallel polarization, the reflec-
tance r= �rp�2 illustrated in Fig. 6 shows a pronounced differ-
ence. At Brewster’s angle iB=tan−1 n0, no reflections occur.
Moreover, for i� iB the reflectance is small, it even drops
close to zero for d /� around 1/ �2n0�. We will see that this
feature significantly influences our numerical results on the
diffusion of light.

We implemented the full Eqs. �20� and �21� in our Monte
Carlo simulations. We used the initial points and launching
directions mentioned in Sec. III B, but evaluated the statistics
of the photon cloud at times �� �7000,7150, . . . ,11 500� �in
units of l /c� in order to achieve the desired accuracy. We did
not observe any dependence on the starting point and the
starting direction. We, therefore, averaged the simulated dif-
fusion constants over all starting positions and angles, the
error bars reflect the standard deviation of this averaging
process.

First, we assume that all films of the foam have the same
thickness dav. In Fig. 7 we plot the average of the diffusion
constants Dx, Dy, and Dz as a function of dav /�. D is clearly
oscillating when dav /� decreases from 3. It exhibits two
strong maxima around dav /�=0.84 and 0.43. After a pro-
nounced minimum around dav /�=0.2, the diffusion constant
finally monotonically increases. Second, in our model we
introduce some additional randomness in the thickness of the
film d assuming that it is uniformly distributed in �dav
−dw ,dav+dw�, where dav denotes the average thickness and
dw the width of the distribution. We will comment on this
assumption in Sec. V. In Fig. 8 we plot the diffusion constant
as a function of dav /� for different disorder in the film thick-
ness �for dw /dav=0.5 and 0.9, only data around dav /�=0.4
are shown�. Obviously, disorder in d decreases the oscilla-
tions to an approximately constant diffusion constant D for
dav /��1. The two strong maxima are reduced noticeably
and ultimately disappear for strong disorder in the film thick-
ness, as illustrated by the data for dw /dav=0.5 and 0.9 around

FIG. 5. Intensity reflectance �rs�2 as a function of angle of inci-
dence i �in radians� for various film thicknesses d /� as given by
Eqs. �B1� and �B2�.

FIG. 6. Intensity reflectance �rp�2 as a function of angle of inci-
dence i �in radians� for various film thicknesses d /� as given by
Eqs. �B1� and �B2�.

FIG. 7. The diffusion constant in units of cell diameter H times
light velocity c as a function of dav /� for a foam with constant film
thickness. Monte Carlo simulation and theoretical results are de-
noted, respectively, by points and line.
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dav /�=0.4. However, the monotonic increase in D for small
dav /� does not show a significant dependence on dw.

B. Analytical estimate of the diffusion constant

We now present an analytic theory to calculate the diffu-
sion constant. As mentioned in the Introduction, a multitude
of different physical problems have been subsumed under the
random-walk concept. In analogy to the freely rotating chain
model of polymers �39�, one can also evaluate the mean-
square displacement of a photon:

	x2 + y2 + z2
n =��
i=1

n

�
j=1

n

si · s j�
= nls

2 + 2ls
2�

i=1

n−1

�
j=i+1

n �cos
 �
k=i+1

j

�k�� ,

�22�

where n is the number of random-walk steps and s j is the jth
step vector. In going from the first to the second line, we
assume that we can pull out the average step length ls from
the ensemble average. Furthermore, the angle �k between
two adjacent step vectors is introduced. To evaluate the last
term in Eq. �22�, we apply familiar trigonometric identities,
use 	sin �k
=0 valid for nonchiral random walks,
and assume the factorization 	cos �1 cos �2¯cos �m

= 	cos �1
	cos �2
¯ 	cos �m
 so that

�cos
 �
k=i+1

j

�k�� = 	cos �
 j−i. �23�

The last term in Eq. �22� can now be calculated with the help
of the theory for geometrical series and the mean-square dis-
placement finally becomes

	x2 + y2 + z2
n = nls
21 + 	cos �

1 − 	cos �


. �24�

The time for n steps is �=nls /c, thus comparing to 	x2+y2

+z2
=6D� gives an expression for the diffusion constant

D =
1

6
lsc

1 + 	cos �

1 − 	cos �


. �25�

The task is now to calculate 	cos �
. For our foam prob-
lem, two contributions arise from photons incident on a liq-
uid film: either �=0 with the probability t�i�=1−r�i� for
transmitted photons or �=�−2i with the probability r�i� for
reflected photons. Thus

	cos �
 = �
0

�/2

�1 − r�i��w�i�di − �
0

�/2

cos�2i�r�i�w�i�di ,

�26�

where w�i� is the probability distribution of the angle of in-
cidence i. Apparently, the magnitude of 	cos �
 crucially de-
pends on the distribution w�i�.

The probability distribution w�i� can be estimated by ap-
proximating the Kelvin cell by a sphere of diameter H. Any
incident ray and the center of the sphere define a planar cross
section of the sphere, which we show in Fig. 9. Each ray
with incident angle i is tangential to an inner sphere with
radius Hi= �H /2�sin i. We now assume that the number of
rays with incident angles smaller than or equal to i is pro-
portional to the surface 4�Hi

2 of the inner sphere, i.e., the
cumulative distribution function Wc�i�=�0

i w�i��di� is

Wc�i� =
4�Hi

2

4�H2 = sin�i�2, �27�

and therefore

w�i� =
dWc�i�

di
= sin�2i� . �28�

Figure 10 shows an excellent agreement between Eq. �28�
�full line� and Monte Carlo simulations �symbols� confirming
our assumption in deriving Eq. �28�. As expected, w�i� does
not depend on the initial conditions of the photons nor on the
value of dav /�. We checked that the argument to derive w�i�
is also valid in two dimensions by replacing the surface of

FIG. 8. The diffusion constant in units of cell diameter H times
light velocity c as a function of dav /� for foams with various thick-
ness distribution. Note, for dw /dav=0.5 and 0.9, the pronounced
maximum disappears.

FIG. 9. The cross section of the spheres of radii H /2 and Hi

= �H /2�sin i are shown with full and dashed lines, respectively. Any
ray tangent to the inner sphere leads to the incidence angle i.
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the inner sphere with the perimeter of an inner circle. This
gives a distribution function w�i�=cos i in agreement with
our simulations of photon transport in Voronoi foams �18�.

Equation �25� together with Eqs. �26� and �28� represent
our analytic theory for the diffusion constant. As reflectance
r�i� we take an average over the parallel and perpendicular
polarization states of a photon: r�i�= ��rp�2+ �rs�2� /2. The re-
sult is indicated as a full line in Fig. 7. Clearly, the agreement
with our Monte Carlo simulations is excellent. As fit param-
eter we have chosen ls=0.77H which is a reasonable value,
as the shortest and longest steps are zero and �10l
�1.135H, respectively.

A closer inspection of Fig. 7 shows that our theory does
not fully describe the height of the pronounced maximum at
dav /�=0.43. The reason lies in the reflectance r�i� which we
choose as an average over �rp�2 and �rs�2. By doing this, we
neglect long straight photon paths that cross parallel faces in
the Kelvin structure. They occur for the parallel polarization
state since below the Brewster angle the reflectance is small
and in the case of dav /�=0.43 close to zero �see Fig. 6�. We
have explicitly confirmed this explanation in the two-
dimensional case where parallel and perpendicular polariza-
tion states do not mix. When we bring disorder into the
foam, parallel faces no longer exist and the height of the
maximum will decrease to the value predicted by our theo-
retical approach.

V. DISCUSSIONS AND CONCLUSIONS

In previous papers, we have investigated photon transport
in two-dimensional model foams �17–19�. To extend our in-
vestigations to three dimensions, we have studied persistent
random walks on a Kelvin structure based on rules motivated
by ray optics. Although the Kelvin foam is a highly idealized
periodic structure, it serves as a first legitimate approach for
understanding diffusion of light in three-dimensional foams.
In a first model, we used a constant intensity reflectance r.
We identified special cases where photons move on a line
�1D random walk� or in a plane �2D random walk� and de-
rived the corresponding diffusion constants analytically �see

Eqs. �4� and �17��. In general, photons diffuse in three-
dimensional space, thus we performed numerical simulations
to mimic their random walks and determined the diffusion
constant �19�. Quite remarkably, the diffusion constants of
the 3D Kelvin structure and 2D disordered Voronoi foams
are very similar �see Eqs. �19� and �1��. This confirms our
speculation in Ref. �18� that the dimension of space does not
have a strong influence on the magnitude of the diffusion
constant. Note that in all these cases, the diffusion constant is
mainly controlled by the factor �1−r� /r independent of the
dimension of space and the cell’s shape. It expresses the fact
that for r=0 photon transport is ballistic and that for r=1
photons stay confined to the initial cell.

Several features of our results are remarkable. Apart from
a few cases discussed in Secs. II and III A, the diffusion
constant does not depend on the injection angles. Further-
more, it deviates from the �1−r� /r law by an additional fac-
tor linear in r. This is clearly visible in Fig. 4. So features of
the 2D disordered Voronoi foams are preserved in the three-
dimensional case �18�. This indicates that the special photon
paths in our ordered 3D foam, as discussed in Sec. II, are not
important for the overall diffusion constant, in contrast to the
2D hexagonal foam �17�. Furthermore, our current guess is
that the additional linear factor represents path correlations
induced by the local structure of the foam �19�. The presence
of such correlations is clear when all faces are reflecting �r
=1�, as highly correlated succesive reflections ensure the
photon confinement.

In a second, more realistic model, we used the intensity
reflectances of thin films illustrated in Figs. 5 and 6. They
show a very rich dependence on film thickness and angle of
incidence. Their common characteristic feature is that close
to grazing incidence �i=� /2�, the reflectance always sharply
increases to one, which means total reflection even for films
as thin as the common black film. We performed extensive
Monte Carlo simulations using these thin-film reflectances.
The diffusion constant exhibits oscillations when plotted as a
function of film thickness and then steadily increases for
dav /��0.2. When disorder is introduced in the film thick-
ness, the oscillations disappear whereas the steady increase
remains unaltered. We are able to model the photons’ random
walk and calculate the diffusion constant with a theory in
analogy to the rotating chain model of polymers. Besides an
average reflectance and a mean-step length, the theory re-
quires a distribution function for the angle of incidence for
which we motivate an analytic formula in accord with simu-
lations. The theory gives an excellent agreement with the
simulation data. It extends our qualitative explanation of the
diffusion constant based on incident-angle averaged reflec-
tion coefficients in Ref. �18�. Our “mean-field” theory does
not fully describe the height of the most pronounced maxi-
mum in Fig. 7. We attribute this feature to the very small
reflectance in the parallel polarization state when the incident
angles are smaller than or equal to the Brewster angle. The
extreme height is an artifact of the Kelvin structure, it should
be reduced in disordered foams even without disorder in the
film thickness. Note that parallel polarized light propagating
through one-dimensional disordered structures also exhibits
a Brewster anomaly since localization lengths become ex-

FIG. 10. The probability distribution w�i� �in inverse radians� as
a function of i �in radians� for various dav /�. Monte Carlo simula-
tions �symbols� and theoretical prediction w�i�=sin�2i� �full line�
agree very well.
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tremely large �40�. Nevertheless, the strength of our analytic
theory is that it gives a reliable estimate of the diffusion
constant using a minimum of input parameters and a distri-
bution function for the angle of incidence that encodes the
foam structure. We add here a comment about our model
foam. As already mentioned in the beginning of Sec. II, the
unit cell of the Kelvin foam is actually the tetrakaidecahe-
dron with some small curvature added to the hexagonal
faces. This curvature will not change the distribution func-
tion w�i� of Eq. �28� significantly and we, therefore, do not
expect any significant changes in the diffusion coefficient.

Careful measurements of the diffusion constant as a func-
tion of the liquid volume fraction � were performed by Vera,
Saint-Jalmes, and Durian �9�. To compare our theoretical
findings to their experiments, we should know how the film
thickness dav depends on �. However, there are controversial
statements in literature. On the one hand, it is assumed that
dav is set by the interfacial forces, i.e., independent of �.
Even for this situation, different values are stated with dav
�30 nm �common black film� �41,42� and dav�100 nm
�43�. On the other hand, a linear relationship dav�� is re-
ported with film thicknesses up to 2000 nm �44�. The last
reference might also justify our assumption that the film
thickness in a real foam shows some distribution about an
average value. By such a mechanism, we reduce the oscilla-
tions in the diffusion constant to a nearly constant value for
dav /��0.2 when plotted against the ratio dav /� of film
thickness to wavelength of light. This might be one explana-
tion that in experiments only a weak dependence of the dif-
fusion constant on � is observed �9�. Another explanation is
that thin-film reflectances, as employed in this paper, are not
important in the experiments just reported. Indeed recent ex-
periments observe photon channeling in the range 0.04��
�0.2 for the liquid volume fraction �20�. This phenomena
can be explained by treating reflections and transmittances at
each liquid-gas interface separately without taking into ac-
count interferences between light rays as it is done for thin
films �45�. Our current view is �45� that the work presented
here applies to very dry foams with ��0.04 where photon
channeling is absent �20�. Especially, by taking into account
thin-film reflectances, our model is able to explain the diver-
gence of the diffusion constant D with decreasing �, as ob-
served in experiments �9�, whereas the photon-channeling
model gives a constant D for �→0 �45�.

In experiments, the transport-mean-free path l* is mea-
sured as the key parameter of diffusive light transport �4–6�.
In three-dimensional systems, it is defined via D=cl* /3. Ex-
perimental values for l* /H increase from 2 to 20 for decreas-
ing � �9� whereas we determine a range of l* /H between 10
�for dav /��0.8� and 25 �for dav /�=0.06, i.e., for a common
black film� as illustrated in Fig. 8. That means our theoretical
values for l* fall in the same range as the experimental values
for the driest foams in Ref. �9�. This shows that liquid films
are important for the understanding of photon diffusion in
dry foams otherwise we should have obtained much larger
transport-mean-free paths.

The Kelvin structure is an idealized foam. We, therefore,
are extending our studies towards real dry foams by intro-
ducing topological and geometrical disorder based on a 3D
Voronoi-foam model. This will provide us with a pretty re-

alistic system which will enable us to study, e.g., whether
random orientations of the liquid films decrease the
transport-mean-free path as observed in the two-dimensional
case �18�. Further extensions of the model would then in-
clude scattering from Plateau borders and vertices.

Gradually our understanding of diffusive light transport is
evolving. For medium liquid volume fraction, photon chan-
neling seems to be a very appealing model. For very dry
foams, the importance of ray optics together with thin-film
reflectances could be checked. For example, close to a com-
mon black film, the diffusion constant should exhibit a strong
dependence on the wavelength of light. Another path to pur-
sue is the creation of artificial foam structures which would
help to systematically test the influence of various param-
eters on photon diffusion. So, to achieve a complete under-
standing of photon diffusion in foams, there is still much to
do for both experimentalists and theorists.
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APPENDIX A

The tetrakaidecahedral cell has six square faces which we
number from 1 to 6. The remaining faces are hexagons
which we number from 7 to 14. The origin of the Cartesian
coordinates is placed at the center of the unit cell, and unit
vectors êx, êy, and êz are assumed normal to faces 1, 2, and 6,
respectively. Note that the third �fourth� �sixth� face is ob-
tained by reflecting the first �second� �fifth� face in the plane
x=0�y=0��z=0�. Eleventh, twelfth, thirteenth, and four-
teenth faces are reflections of the eighth, ninth, tenth, and
seventh faces, respectively, in the origin �x=y=z=0�.

In Table I, the ith face is characterized by its center ci, its
normal vector n̂i, and its set of vertices �vi

1 ,vi
2 ,vi

3 ,vi
4� or

�vi
1 ,vi

2 ,vi
3 ,vi

4 ,vi
5 ,vi

6�. l denotes the cell edge length and a
=2�2l.

The conventional unit cell of a bcc structure contains two
lattice points. By definition, the Voronoi cell of a bcc struc-
ture contains one lattice point. It follows that the volume of
the tetrakaidecahedral cell is a3 /2. We define the effective
diameter H of the cell through the relation �H3 /6=a3 /2 or

H =�3 48�2

�
l � 2.78528l . �A1�
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TABLE I. Characteristics of the tetrakaidecahedral cell.

Face ci n̂i vi
j

1 �1

2
,0 ,0�a �1,0,0�

v1
1= �1

2
,0 ,

1

4 �a v1
2= �1

2
,
1

4
,0�a

v1
3= �1

2
,0 ,−

1

4 �a v1
4= �1

2
,−

1

4
,0�a

2 �0,
1

2
,0�a �0,1,0�

v2
1= �0,

1

2
,
1

4 �a v2
2= �1

4
,
1

2
,0�a

v2
3= �0,

1

2
,−

1

4 �a v2
4= �−1

4
,
1

2
,0�a

3 �−1

2
,0 ,0�a �−1,0 ,0�

v3
1= �−1

2
,0 ,

1

4 �a v3
2= �−1

2
,
1

4
,0�a

v3
3= �−1

2
,0 ,−

1

4 �a v3
4= �−1

2
,−

1

4
,0�a

4 �0,−
1

2
,0�a �0,−1,0�

v4
1= �0,−

1

2
,
1

4 �a v4
2= �1

4
,−

1

2
,0�a

v4
3= �0,−

1

2
,−

1

4 �a v4
4= �−1

4
,−

1

2
,0�a

5 �0,0 ,−
1

2 �a �0,0 ,−1�
v5

1= �1

4
,0 ,−

1

2 �a v5
2= �0,

1

4
,−

1

2 �a
v5

3= �−1

4
,0 ,−

1

2 �a v5
4= �0,−

1

4
,−

1

2 �a
6 �0,0 ,

1

2 �a �0,0,1�
v6

1= �1

4
,0 ,

1

2 �a v6
2= �0,

1

4
,
1

2 �a
v6

3= �−1

4
,0 ,

1

2 �a v6
4= �0,−

1

4
,
1

2 �a
7 �1

4
,
1

4
,
1

4 �a � 1
�3

,
1
�3

,
1
�3 � v7

1= �1

2
,
1

4
,0�a v7

2= �1

4
,
1

2
,0�a

v7
3= �0,

1

2
,
1

4 �a v7
4= �0,

1

4
,
1

2 �a
v7

5= �1

4
,0 ,

1

2 �a v7
6= �1

2
,0 ,

1

4 �a
8 �−1

4
,
1

4
,
1

4 �a �− 1
�3

,
1
�3

,
1
�3 � v8

1= �0,
1

2
,
1

4 �a v8
2= �0,

1

4
,
1

2 �a
v8

3= �−1

2
,
1

4
,0�a v8

4= �−1

4
,
1

2
,0�a

v8
5= �−1

2
,0 ,

1

4 �a v8
6= �−1

4
,0 ,

1

2 �a
9 �−1

4
,−

1

4
,
1

4 �a �− 1
�3

,−
1
�3

,
1
�3 � v9

1= �−1

2
,0 ,

1

4 �a v9
2= �−1

2
,−

1

4
,0�a

v9
3= �−1

4
,−

1

2
,0�a v9

4= �0,−
1

2
,
1

4 �a
v9

5= �0,−
1

4
,
1

2 �a v9
6= �−1

4
,0 ,

1

2 �a
10 �1

4
,−

1

4
,
1

4 �a � 1
�3

,−
1
�3

,
1
�3 � v10

1 = �1

2
,0 ,

1

4 �a v10
2 = �1

2
,−

1

4
,0�a

v10
3 = �0,−

1

2
,
1

4 �a v10
4 = �1

4
,−

1

2
,0�a

v10
5 = �1

4
,0 ,

1

2 �a v10
6 = �0,−

1

4
,
1

2 �a
11 �1

4
,−

1

4
,−

1

4 �a � 1
�3

,−
1
�3

,−
1
�3 � v11

1 = �0,−
1

2
,−

1

4 �a v11
2 = �0,−

1

4
,−

1

2 �a
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APPENDIX B

The coeffients rp, rs, tp, and ts introduced in Eq. �20� are

rp =
r12p�1 − eı��
1 − r12p

2 eı� ,

tp =
t12pt23peı�/2

1 − r12p
2 eı� ,

rs =
r12s�1 − eı��
1 − r12s

2 eı� ,

ts =
t12st23se

ı�/2

1 − r12s
2 eı� , �B1�

where

r12p =
n0

2 cos i − �n0
2 − sin2 i

n0
2 cos i + �n0

2 − sin2 i
,

t12p =
2n0 cos i

n0
2 cos i + �n0

2 − sin2 i
,

t23p =
2n0

�n0
2 − sin2 i

n0
2 cos i + �n0

2 − sin2 i
,

r12s =
cos i − �n0

2 − sin2 i

cos i + �n0
2 − sin2 i

,

t12s =
2 cos i

cos i + �n0
2 − sin2 i

,

t23s =
2�n0

2 − sin2 i

cos i + �n0
2 − sin2 i

,

� = 4�
d

�
�n0

2 − sin2�i� . �B2�

TABLE I. �Continued.�

Face ci n̂i vi
j

v11
3 = �1

2
,−

1

4
,0�a v11

4 = �1

4
,−

1

2
,0�a

v11
5 = �1

2
,0 ,−

1

4 �a v11
6 = �1

4
,0 ,−

1

2 �a
12 �1

4
,
1

4
,−

1

4 �a � 1
�3

,
1
�3

,−
1
�3 � v12

1 = �1

2
,0 ,−

1

4 �a v12
2 = �1

2
,
1

4
,0�a

v12
3 = �1

4
,
1

2
,0�a v12

4 = �0,
1

2
,−

1

4 �a
v12

5 = �0,
1

4
,−

1

2 �a v12
6 = �1

4
,0 ,−

1

2 �a
13 �−1

4
,
1

4
,−

1

4 �a �− 1
�3

,
1
�3

,−
1
�3 � v13

1 = �−1

2
,0 ,−

1

4 �a v13
2 = �−1

2
,
1

4
,0�a

v13
3 = �0,

1

2
,−

1

4 �a v13
4 = �−1

4
,
1

2
,0�a

v13
5 = �−1

4
,0 ,−

1

2 �a v13
6 = �0,

1

4
,−

1

2 �a
14 �−1

4
,−

1

4
,−

1

4 �a �− 1
�3

,−
1
�3

,−
1
�3 � v14

1 = �−1

2
,−

1

4
,0�a v14

2 = �−1

4
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Note: ci, n̂i, and vi

j are center, normal vector, and vertices of the ith face, respectively. l denotes the cell edge length and a=2�2l.
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